Association Between Universal Masking and SARS-CoV-2 Positivity Among Health Care Workers

The institutional review board of MGB approved the study and waived informed consent. Using electronic medical records, we identified HCWs providing direct and indirect patient care who were tested for SARS-CoV-2 with reverse transcriptase–polymerase chain reaction between March 1 and April 30, 2020. The primary criterion for testing HCWs in our health care system was having symptoms consistent with SARS-CoV-2 infection. Information on the job description of each HCW was obtained by linking their record to the MGB Occupational Health Services and Human Resources databases.

We identified 3 phases during the study period: a preintervention period before implementation of universal masking of HCWs (March 1-24, 2020); a transition period until implementation of universal masking of patients (March 25–April 5, 2020) plus an additional lag period to allow for manifestations of symptoms (April 6-10, 2020), as previously defined5; and an intervention period (April 11-30, 2020). Positivity rates included the first positive test result for all HCWs in the numerator and HCWs who never tested positive plus those who tested positive that day in the denominator. For each HCW, any tests subsequent to their first positive test result were excluded. Using weighted nonlinear regression, we fit the best curve for the preintervention and intervention periods (based on R2 value). The number of daily tests was used as the weight such that days with more tests had more weight in determining the curve. The overall slope of each period was calculated using linear regression to estimate the mean trend, regardless of curve shape. The change in overall slope between the preintervention and intervention periods was compared to determine any statistically significant change in mean trend, using a 2-sided α = .05. The analysis was conducted using R version 4.0 (R Foundation).

Discussion

Universal masking at MGB was associated with a significantly lower rate of SARS-CoV-2 positivity among HCWs. This association may be related to a decrease in transmission between patients and HCWs and among HCWs. The decrease in HCW infections could be confounded by other interventions inside and outside of the health care system (Figure), such as restrictions on elective procedures, social distancing measures, and increased masking in public spaces, which are limitations of this study. Despite these local and statewide measures, the case number continued to increase in Massachusetts throughout the study period,6 suggesting that the decrease in the SARS-CoV-2 positivity rate in MGB HCWs took place before the decrease in the general public. Randomized trials of universal masking of HCWs during a pandemic are likely not feasible. Nonetheless, these results support universal masking as part of a multipronged infection reduction strategy in health care settings.

Section Editor: Jody W. Zylke, MD, Deputy Editor.

Corresponding Author: Deepak L. Bhatt, MD, MPH, Brigham and Women’s Hospital, 75 Francis St, Boston, MA 02115 (dlbhattmd@post.harvard.edu).

Accepted for Publication: July 1, 2020.

Published Online: July 14, 2020. doi:10.1001/jama.2020.12897

Author Contributions: Dr Bhatt had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Drs Wang and Ferro contributed equally to this article.

Concept and design: Wang, Ferro, Hashimoto, Bhatt.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Wang, Ferro.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Wang, Zhou.

Administrative, technical, or material support: Wang, Ferro, Hashimoto.

Supervision: Hashimoto, Bhatt.

Conflict of Interest Disclosures: Dr Bhatt discloses the following relationships: advisory board: Cardax, CellProthera, Cereno Scientific, Elsevier Practice Update Cardiology, Level Ex, Medscape Cardiology, PhaseBio, PLx Pharma, Regado Biosciences; board of directors: Boston VA Research Institute, Society of Cardiovascular Patient Care, TobeSoft; chair: American Heart Association Quality Oversight Committee, NCDR-ACTION Registry Steering Committee, VA CART Research and Publications Committee; data monitoring committees: Baim Institute for Clinical Research, Cleveland Clinic, Contego Medical, Duke Clinical Research Institute, Mayo Clinic, Mount Sinai School of Medicine, Population Health Research Institute; honoraria: American College of Cardiology, Baim Institute for Clinical Research, Belvoir Publications, Duke Clinical Research Institute, HMP Global, Journal of the American College of Cardiology, K2P, Level Ex, Medtelligence/ReachMD, MJH Life Sciences, Population Health Research Institute, Slack Publications, Society of Cardiovascular Patient Care, WebMD; deputy editorship: Clinical Cardiology; research funding: Abbott, Afimmune, Amarin, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Cardax, Chiesi, CSL Behring, Eisai, Ethicon, Ferring Pharmaceuticals, Forest Laboratories, Fractyl, Idorsia, Ironwood, Ischemix, Lexicon, Lilly, Medtronic, Pfizer, PhaseBio, PLx Pharma, Regeneron, Roche, Sanofi Aventis, Synaptic, The Medicines Company; royalties: Elsevier; site coinvestigator: Biotronik, Boston Scientific, CSI, St Jude Medical, Svelte; trustee: American College of Cardiology; unfunded research: FlowCo, Merck, Novo Nordisk, Takeda. No other disclosures were reported.

Additional Contributions: We thank Stacey A. Duey, MT(ASCP), MCHP, Mass General Brigham, for assistance in extracting data from the Research Patient Data Registry, and Karen Hopcia, ScD, ANP-BC, Mass General Brigham, for assistance in extracting data from Occupational Health Services. No compensation was received for their roles.

This content was originally published here.

Leave a Reply

Your email address will not be published. Required fields are marked *